Fermer ce champ de recherche.





Actual position and research subject

My research works aim to unravel how microorganisms adapt to fluctuations in their environment (stresses and carbon sources). I explore the physiology and mechanisms of adaptation of Gram positive and negative bacteria as well as pathogenic and commensal yeasts. I use transcriptomic, proteomic, and metabolomics approaches combined to system biology strategies.

Education and Diploma

Training & Teaching

  • Biochemistry, Microbiology, Omics

List of selected publications

  • Enjalbert,B., Parrou,J.L., Olivier,V., & François,J. (2000) Mitochondrial respiratory mutants of Saccharomyces cerevisiae accumulate glycogen and readily mobilize it in a glucose-depleted medium. Microbiology-SGM 146: 2685-2694. doi: 10.1099/00221287-146-10-2685.
  • Enjalbert,B., Nantel,A., & Whiteway,M. (2002) Stress induced gene expression in Candida albicans: Absence of a general stress response. Molecular Biology of the Cell 14: 1460-67. doi: 10.1091/mbc.E02-08-0546.
  • Enjalbert,B., Parrou,J.L., Teste,M.A., & François,J. (2004) Combinatorial control by the protein kinases PKA, PHO85 and SNF1 of transcriptional induction of the Saccharomyces cerevisiae GSY2 gene at the diauxic shift. Molecular Genetics and Genomics 271: 697-708. doi: 10.1007/s00438-004-1014-8
  • Enjalbert,B. & Whiteway,M. (2005) Release from quorum sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryotic Cell 4: 1203-10. doi: 10.1128/EC.4.7.1203-1210.2005
  • Enjalbert,B. Smith,DA., Nicholls,S., Brown,AJP. & Quinn,J. (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Molecular Biology of the Cell 17: 1018-32. doi: 10.1091/mbc.e05-06-0501.
  • Enjalbert,B., MacCallum,D.M., Odds,F.C., & Brown,A.J.P. (2007) Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infection and Immunity 75: 2143-51. doi: 10.1128/IAI.01680-06.
  • Enjalbert,B., Moran,G.P., Vaughan,C., Yeomans,T., MacCallum,D.M., Quinn,J., Coleman,D.C., Brown,A.J.P., & Sullivan,D.J. (2009) Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Molecular Microbiology 72: 216-28. doi: 10.1111/j.1365-2958.2009.06640.x.
  • Enjalbert,B., Rachini,A., Vediyappan,G., Pietrella,D., Spaccapelo,R., Vecchiarelli,A., Brown,A.J.P & d’Enfert,C.. (2009) A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infection and Immunity 77: 4847-58. doi: 10.1128/IAI.00223-09.
  • Enjalbert,B., Jourdan,F., & Portais,J.C. (2011) Intuitive visualization and analysis of multi-omics data and application to Escherichia coli carbon metabolism. PLoS One 6: e21318. doi: 10.1371/journal.pone.0021318.
  • Enjalbert,B., Letisse,F., & Portais,J.C. (2013) Physiological and molecular timing of the glucose to acetate transition in Escherichia coli. Metabolites 3: 820-37. doi: 10.3390/metabo3030820.
  • Enjalbert,B., Cocaign-Bousquet,M., Portais,J.C., & Letisse,F. (2015) Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition. J Bacteriol 197: 3173-81. doi: 10.1128/JB.00128-15.
  • Morin,M., Ropers,D., Letisse,F., Laguerre,S., Portais,JC., Cocaign-Bousquet,M., & Enjalbert,B. (2016) The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli. Mol Microbiol 100: 686-700. doi: 10.1111/mmi.13343.
  • Enjalbert,B., Millard,P., Dinclaux,M., Portais,JC., & Letisse,F. (2017) Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Scientific Reports 7: 42135. doi: 10.1038/srep42135.
  • Morin,M., Ropers,D., Cinquemani,E., Portais,J.C., Cocaign-Bousquet,M., & Enjalbert,B. (2017) The Csr system regulates Escherichia coli fitness by controlling glycogen accumulation and energy levels. MBio 8. 01628-17. doi: 10.1128/mBio.01628-17.
  • Barthe, M., Tchouanti ,J., Gomes, P.H., Bideaux, C., Lestrade, D., Graham, C., Steyer, J.P., Meleard, S., Harmand, J., Gorret, N., Cocaign-Bousquet, M., & Enjalbert, B. (2020) Availability of the molecular switch XylR controls phenotypic heterogeneity and lag duration during Escherichia coli adaptation from glucose to xylose. mBio 11(6):e02938-20.  doi: 10.1128/mBio.02938-20.
  • Millard,P., Enjalbert, B., Uttenweiler-Joseph, S., Portais ,J.C., & Létisse, F. (2021) Control and regulation of acetate overflow in Escherichia coli. eLife 10:e63661. doi: 10.1101/2020.08.18.255356.
  • Pelus,A., Bordes,G., Barbe,S., Bouchiba,Y., Burnard,C., Cortés,J., Enjalbert,B., Esque,J., Estaña,A., Fauré,R., Henras,A.K., Heux,S., Le Men,C., Millard,P., Nouaille,S., Pérochon,J., Toanen,M., Truan,G., Verdier,A., Wagner,C., Romeo,Y., Montanier,C.Y. (2021) A tripartite carbohydrate-binding module to functionalize cellulose nanocrystals. Biomater Sci. 9(22):7444-7455. doi: 10.1039/d1bm01156a.