Cyril CHARLIER

Actual position and research subject

I joined the TBI in November 2019 as a CNRS researcher in NMR team (EAD17). My main goal is to apply NMR in the framework of biotechnologies focusing on the question of catalysis ranging from the catalysis of reactions in metabolic network to the catalysis of enzymatic reactions in a bioreactor. On one hand I develop tools to maintain the spectral resolution in complex spectra and to follow such spectra as function of time to further investigate metabolism by NMR. On the other hand, I use liquid state NMR spectroscopy to study the relationship structure-dynamics-function on enzymes.

Education and Diploma

List of selected publications

  • Cox, N.; Charlier, C.; Vijayaraj, R.; De La Mare, M.; Barbe, S.; André, I.; Lippens, G.; Montanier, C., The Covalent Complex of Jo-In Results from a Long-Lived, Non-Covalent Intermediate State with near-Native Structure, BBRC, 2022, 589, 223–28.
    https://doi.org/10.1016/j.bbrc.2021.12.028.
  • Charlier, C.; Cox, N.; Martine Prud’homme, S.; Geffard, A.; Nuzillard, J-M.; Luy, B.; Lippens, G., Virtual Decoupling to Break the Simplification versus Resolution Trade-off in Nuclear Magnetic Resonance of Complex Metabolic Mixtures. Magnetic Resonance 2021, 2, (2), 619–27. https://doi.org/10.5194/mr-2-619-2021.
  • Cox, N.; Millard P.; Charlier, C., Lippens, G., Improved NMR Detection of Phospho-Metabolites in a Complex Mixture. Anal. Chem. 2021, 93, (11), 4818–24. https://doi.org/10.1021/acs.analchem.0c04056.
  • Ramanujam, V., Charlier, C.†*, and Bax, A., Observation and Kinetic Characterization of Transient Schiff Base Intermediates by CEST NMR Spectroscopy. Angew Chem Int Ed Engl 2019 58, (43), 15309–12. https://doi.org/10.1002/anie.201908416.
  • Charlier, C.; Courtney, J. M; Anfinrud, P.; Bax, A., Interrupted Pressure-Jump NMR Experiments Reveal Resonances of Protein On-Pathway Folding Intermediate. J Phys Chem B 2018, 122, no 49, 11792–99 https://doi.org/10.1021/acs.jpcb.8b08456.  
  • Cousin, S. F.; Kaderavek, P.; Bolik-Coulon, N.; Gu, Y.; Charlier, C.; Carlier, L.; Bruschweiler-Li, L.; Marquardsen, T.; Tyburn, J. M.; Bruschweiler, R.; Ferrage, F., Time-Resolved Protein Side-Chain Motions Unraveled by High-Resolution Relaxometry and Molecular Dynamics Simulations. J Am Chem Soc 2018. https://doi.org/10.1021/jacs.8b09107.
  • Charlier, C.; Courtney, J. M.; Alderson, T. R.; Anfinrud, P.; Bax, A., Monitoring 15N Chemical Shifts During Protein Folding by Pressure-Jump NMR. J Am Chem Soc 2018, 140 (26), 8096-8099. https://doi.org/10.1021/jacs.8b04833.
  • Charlier, C.; Alderson, T. R.; Courtney, J. M.; Ying, J.; Anfinrud, P.; Bax, A., Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Proceedings of the National Academy of Sciences of the United States of America 2018, 115 (18), E4169-E4178. https://doi.org/10.1073/pnas.1803642115.
  • Lippens, G.; Cahoreau, E., Millard, R.; Charlier, C.; Lopez, J.; Hanoulle, X.; Portais, J.C., In-cell NMR: from metabolites to macromolecules. Analyst 2018, 143 (3), 620-629. https://doi.org/10.1039/C7AN01635B.
  • Alderson, T. R.; Lee, J. H.; Charlier, C.; Ying, J.; Bax, A., Propensity for cis-Proline Formation in Unfolded Proteins. Chembiochem 2018, 19 (1), 37-42. https://doi.org/10.1002/cbic.201700548
  • Charlier, C.; Bouvignies, G.; Pelupessy, P.; Walrant, A.; Marquant, R.; Kozlov, M.; De Ioannes, P.; Bolik-Coulon, N.; Sagan, S.; Cortes, P.; Aggarwal, A. K.; Carlier, L.; Ferrage, F., Structure and dynamics of an intrinsically disordered protein region that partially folds upon binding by chemical-exchange NMR. J Am Chem Soc 2017, 139 (35), 12219-12227. https://doi.org/10.1021/jacs.7b05823.
  • Alderson, T. R.; Charlier, C.; Torchia, D. A.; Anfinrud, P.; Bax, A., Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy. J Am Chem Soc 2017, 139 (32), 11036-11039. https://doi.org/10.1021/jacs.7b06676
  • Kaderavek, P.; Strouk, L.; Cousin, S. F.; Charlier, C.; Bodenhausen, G.; Marquardsen, T.; Tyburn, J. M.; Bovier, P. A.; Engelke, F.; Maas, W.; Ferrage, F., Full Correlations across Broad NMR Spectra by Two-Field Total Correlation Spectroscopy. Chemphyschem 2017, 18 (19), 2772-2776. https://doi.org/10.1002/cphc.201700369.
  • Cousin, S. F.; Kaderavek, P.; Haddou, B.; Charlier, C.; Marquardsen, T.; Tyburn, J. M.; Bovier, P. A.; Engelke, F.; Maas, W.; Bodenhausen, G.; Pelupessy, P.; Ferrage, F., Recovering Invisible Signals by Two-Field NMR Spectroscopy. Angew Chem Int Ed Engl 2016, 55 (34), 9886-9. https://doi.org/10.1002/anie.201602978.
  • Charlier, C.; Cousin, S. F.; Ferrage, F., Protein dynamics from nuclear magnetic relaxation. Chem Soc Rev 2016, 45 (9), 2410-22. https://doi.org/10.1039/C5CS00832H.
  • Cousin, S. F.; Charlier, C.; Kaderavek, P.; Marquardsen, T.; Tyburn, J. M.; Bovier, P. A.; Ulzega, S.; Speck, T.; Wilhelm, D.; Engelke, F.; Maas, W.; Sakellariou, D.; Bodenhausen, G.; Pelupessy, P.; Ferrage, F., High-resolution two-field nuclear magnetic resonance spectroscopy. Phys Chem Chem Phys 2016, 18 (48), 33187-33194. https://doi.org/10.1039/C6CP05422F.
  • Khan, S. N.; Charlier, C.; Augustyniak, R.; Salvi, N.; Dejean, V.; Bodenhausen, G.; Lequin, O.; Pelupessy, P.; Ferrage, F., Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation. Biophys J 2015, 109 (5), 988-99. https://doi.org/10.1016/j.bpj.2015.06.069.
  • Charlier, C.; Khan, S. N.; Marquardsen, T.; Pelupessy, P.; Reiss, V.; Sakellariou, D.; Bodenhausen, G.; Engelke, F.; Ferrage, F., Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry. J Am Chem Soc 2013, 135 (49), 18665-72. https://doi.org/10.1021/ja409820g.
 
 

Patents:
1.         Ferrage F., Cousin S., Charlier C., Marquardsen T., Tyburn J.M., Method for two field nuclear magnetic resonance measurements. Patent application EP15290102, 3 Aug. 2018