





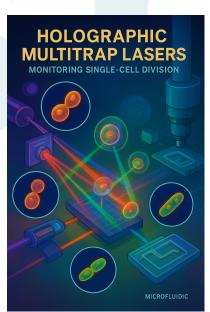
# OPTICAL ENGINEER Development of multiplexed Holographic Optical Tweezers

Laboratory: Transfer-Interface-Mixing (TIM) group, TBI – Toulouse

Biotechnology Institute (INSA Toulouse, CNRS, INRAE)

Location: Toulouse, France

**Duration:** 13 months


Level: Master 2 (or equivalent engineering degree), 1-4 yr experience

Start date: January 2026 (flexible)

**Supervisor:** Mickaël Castelain – <u>mickael.castelain@insa-toulouse.fr</u> **Framework:** SCUBA Project (2026–2029) ANR-25-CE51-7100-01



Modern bioprocesses rely on a precise understanding of **cell-environment interactions** to optimize yield, robustness, and product quality. Yet, at the industrial scale, **imperfect mixing in bioreactors** generates fluctuating microenvironments (in pH, oxygen, temperature, or nutrient availability) that strongly influence microbial physiology.



The SCUBA project (Exploring the Single Cell to Understand the Bioreactor) aims to bridge the gap between microscale cell behavior and large-scale bioreactor performance. It develops a novel experimental platform combining microfluidics, fluorescence imaging, and Holographic Optical Tweezers (HOT) to study single microbial cells in real time under controlled and dynamic environmental conditions. We aim to reinforce our experimental capabilities by further developing and optimizing our Holographic Optical Tweezers (HOT) platform. This system enables the precise manipulation and characterization of individual cells under dynamic environmental conditions, providing a unique window into microbial physiology and population heterogeneity.

### **OBJECTIVES OF THE INTERNSHIP**

We are seeking an **Optical Engineer (internship position)** to take a leading role in the **design, development,** and **implementation** of the next-generation Holographic Optical Tweezers platform. The successful candidate will:

- Design and align advanced optical architectures for holographic trapping and multi-beam manipulation;
- Integrate the HOT system with existing microfluidic and laser-induced fluorescence (LIF-I) setups;
- Develop real-time control and calibration algorithms for precise 3D trapping and force measurements;
- Collaborate with biologists and computational modelers to enable quantitative single-cell studies relevant to microbial bioprocesses;













 Contribute to the validation and dissemination of the system through scientific publications and presentations.

#### **CANDIDATE PROFILE**

- Master's degree (M2) or engineering school background in Optical Engineering, Physics, Photonics, or a related field;
- Strong interest and experience in laser optics, beam shaping, or holography;
- Knowledge of optomechanical design, microfluidic integration, and optical instrumentation;
- Programming skills (e.g., Python, MATLAB, or LabVIEW) for system control and data analysis;
- Interest in biophysical applications, instrumentation, and interdisciplinary research.

## SUPERVISION AND ENVIRONMENT

The applicant will work within the **Transfer-Interface-Mixing (TIM)** group at the **Toulouse Biotechnology Institute (TBI)**. The TIM group gathers complementary expertise in **bioprocess engineering, fluid dynamics, microbiology, and optical manipulation**, fostering a multidisciplinary approach to biotechnological research.

The engineer will work closely with the **SCUBA team** and an **optical engineer** responsible for implementing the holographic optical tweezers upgrade, under the supervision of **Mickaël Castelain**. This application is embedded in the **SCUBA project (2026–2029)** ANR-25-CE51-7100-01.

#### **APPLICATION**

Please send the following documents in a single PDF file to mickael.castelain@insa-toulouse.fr

- Curriculum Vitae
- Motivation letter (max. 1 page)
- Academic transcripts (Master 1 and Master 2, if available)
- 2 letters of reference



